Grant GM-14828 from the National Institutes of Healt of the U.S. Public Health Service. A Fulbright– Hays Travel Grant from the U.S. Educational Foundation in The Netherlands is gratefully acknowledged by one of us (CA). We are indebted to Dr S. T. Rao and Dr D. H. Rohrer for the use of some of their computer programs.

References

- ABRAHAMSSON, S. & NILSSON, B. (1966). J. Org. Chem. 31, 3631.
- ALDEN, R. A., KRAUT, J. & TRAYLOR, T. G. (1968). J. Amer. Chem. Soc. 90, 74.
- ALLEN, F. H. & ROGERS, D. (1966). Chem. Comm. 837.
- Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminsky,
- I. & VAN CATLEDGE, F. A. (1968). J. Amer. Soc. 90, 1199. ALTONA, C. & SUNDARALINGAM, M. (1968). Unpublished observations.
- ALTONA, C. & SUNDARALINGAM, M. (1970). J. Amer. Chem. Soc. 92, 1995.
- ARORA, S. & SUNDARALINGAM, M. (1971). Acta Cryst. B27, 1293.
- BAENZINGER, N. C., RICHARDS, G. F. & DOYLE, J. R. (1965). Acta Cryst. 18, 924.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BRUECKNER, D. A., HAMOR, R. A., ROBERTSON, J. M. & SIM, G. A. (1962). J. Chem. Soc. p. 799.
- CESUR, A. F. & GRANT, D. F. (1965). Acta Cryst. 18, 55.
- CHIANG, J. F., WILCOX, C. F. & BAUER, S. H. (1968). J. Amer. Chem. Soc. 90, 3149.
- Corfield, P. W. R., Doedens, R. J. & Ibers, J. A. (1967). J. Inorg. Chem. 6, 197.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- DALLINGA, G. & TONEMAN, L. H. (1968). Rec. Trav. chim. Pay-Bas, 87, 795.

- DAWSON, B. (1960). Acta Cryst. 13, 403.
- DESTRO, R., FILIPPINI, G., GRAMACCIOLI, C. M. & SIMO-NETTA, M. (1969). Acta Cryst. B25, 2465.
- FABER, D. H. & ALTONA, C. (1971). Chem. Commun. p. 1210.
- FERGUSON, G., FRITCHIE, C. J., ROBERTSON, J. M. & SIM, G. A. (1961). J. Chem. Soc. p. 1976.
- FRATINI, A. V., BRITTS, K. & KARLE, I. L. (1967). J. Phys. Chem. 71, 2482.
- GLEICHER, G. J. & SCHLEYER, P. VON R. (1967). J. Amer. Chem. Soc. 89, 582.
- HANSON, A. W. (1965). Acta Cryst. 19, 19.
- HUBER, C. S. (1969). Acta Cryst. B25, 1140.
- International Tables for X-ray Crystallography (1967). Vol. II. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1967). Chem. Div. Ann. Progr. Rept. 4164, p. 116. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KWART, H. & TAKESHITA, T. (1963). J. Org. Chem. 28, 670.
- LIFSON, S. & WARSHEL, A. (1968). J. Chem. Phys. 49, 5116.
- MACDONALD, A. C. & TROTTER, J. (1965a). Acta Cryst. 18, 243.
- MACDONALD, A. C. & TROTTER, J. (1965b). Acta Cryst. 19, 456.
- MORINO, Y., KUCHITSU, K. & YOKOZEKI, A. (1967). Bull. Soc. Chim. Japan, 40, 1552.
- NILSSON, B. (1968). Acta Chem. Scand. 22, 518.
- NORMENT, H. G. (1965). Acta Cryst. 18, 627.
- SATO, T., SHIRO, M. & KOYAMA, H. (1968). J. Chem. Soc. (B), 935.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. **B24**, 63.
- SOLEIMANI, E. (1966). Diss. Abstr. B27, 1866.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- SUNDARALINGAM, M. (1969). Biopolymers, 7, 821.
- WILLIAMS, J. E., STANG, P. J. & SCHLEYER, P. VON R. (1968). Ann. Rev. Phys. Chem. 10, 531.
- WUNDERLICH, J. A. (1967). Acta Cryst. 23, 846.

Acta Cryst. (1972). B28, 1816

The Crystal Structure of Triuranium Pentaselenide

BY P.T. MOSELEY

Applied Chemistry Division, A.E.R.E., Harwell, Berkshire, England

AND D. BROWN AND B. WHITTAKER

Chemistry Division, A.E.R.E., Harwell, Berkshire, England

(Received 10 January 1972)

Triuranium pentaselenide, U₃Se₅, crystallizes with an orthorhombic unit cell; $a_o = 12.43$ (2), $b_o = 8.48$ (1) and $c_o = 7.77$ (1) Å, Z=4, space group probably *Pnma*. Two environmentally distinct types of uranium atom and two environmentally distinct types of selenium atom are found in the structure. Uranium-selenium interatomic distances range from 2.80 to 3.18 Å, varying with the coordination numbers of the atoms involved. The final *R* value for 615 reflexions, observed by the equi-inclination Weissenberg method, is 0.114.

Introduction

During recent years considerable attention has been devoted to the chalcogenides of uranium, largely as a

result of the complex structural and bonding problems posed by these apparently simple binary compounds. The crystal chemistry of actinide chalcogenides has been surveyed (Dell & Bridger, 1971) and these compounds may be classified for the most part in terms of known structure types. A notable exception, however, is provided by the selenide U_3Se_5 which, on the basis of X-ray powder data, is believed to be isomorphous with U_3S_5 (Khodadad, 1961) and Np₃S₅ (Marcon, 1967). Since this structure type had not hitherto been fully described, it appeared to merit a single-crystal structural investigation.

Experimental

 U_3Se_5 single crystals, prepared* by a vapour-phase iodine transport method at 900°C in a sealed silica apparatus, were ground approximately spherical in a compressed-air driven race with an abrasive wall. The black crystal used for data collection was 0.2 mm in diameter and as near spherical as could be judged by microscopic observation.

The unit-cell parameters and systematic absences, obtained from Weissenberg and precession photographs using Cu $K\alpha$ radiation ($\lambda = 1.5405$ Å) were:

 $a_o = 12.43 \pm 0.02$, $b_o = 8.48 \pm 0.01$, $c_o = 7.77 \pm 0.01$ Å 0kl reflexions absent for k + l odd hk0 reflexions absent for h odd.

This suggested that the space group was either *Pnma* or $Pna2_1$. *Pnma* was selected on the basis of the structure refinement described below.

 ρ (calculated) was 8.99 g.cm⁻³ for Z=4 which compares favourably with the value for ρ (observed) of 9.04 g.cm⁻³ recorded elsewhere (Mazurier & Kho-dadad, 1968).

Taking the mass absorption coefficient for uranium as 128 cm².g⁻¹ (Roof, 1959), the linear absorption coefficient for Mo $K\alpha$ radiation is 980.4 cm⁻¹.

Partial three-dimensional intensity data were re-

corded by the equi-inclination Weissenberg method using zirconium-filtered molybdenum radiation for reciprocal lattice nets nkl for n=0 to 9 inclusive. Intensities from different layers were brought on to an approximately common scale by factors inversely proportional to the exposure times. An empirical correction was made for $\alpha_1 - \alpha_2$ splitting whereby measured intensities attributable to α_1 only were multiplied by the factor 1.34. 615 intensities were estimated visually by comparison with a calibrated scale and corrected for Lorentz and polarization effects. To compensate for anisotropic absorption effects, the specimen crystal was treated as a sphere and the structure amplitudes were corrected by interpolation from the curves given in International Tables for X-ray Crystallography (Bond, 1959).

Solution and refinement of the structure

Positional parameters were assigned to the uranium atoms after consideration of the three-dimensional Patterson function. At this stage it was not possible to decide between the two space groups, and three uranium atoms were placed in general positions of the non-centrosymmetric alternative $Pna2_1$. An electrondensity map revealed the five selenium atoms maintaining a configuration very close to that required by the extra symmetry of *Pnma*. The structure was therefore initially refined in each space group and the results compared.

The scattering factors for uranium and selenium (Hanson, Herman, Lea & Skillman, 1964) were modified by the real parts of the anomalous dispersion corrections (Cromer, 1964), but the full-matrix, leastsquares program (Bracher & Taylor, 1967) employed was not equipped to deal with the imaginary part, which was therefore not introduced at this stage. All reflexions were weighted equally and all atoms refined with isotropic temperature factors. After each cycle of refinement, individual layer scale factors were recal-

Table 1. Refinement in the alternative space groups Positional parameters (×10⁴) and thermal parameters (×10³). $B=8\pi^{2}u$.

	Atom	Wyckoff notation	<i>x</i> / <i>a</i>	y/b	z/c	<i>B</i> (Å ²)
	U(1)	4(a)	1781 (8)	277 (8)	0 (0)	108 (57)
	U(2)	4(a)	102 (5)	5758 (5)	2585 (12)	672 (66)
	U(3)	4(a)	3230 (14)	5299 (15)	-43(14)	2123 (120)
	Se(1)	4(a)	4036 (21)	1675 (21)	510 (22)	333 (225)
	Se(2)	4(a)	1878 (15)	3315 (16)	2530 (48)	1423 (195)
	Se(3)	4(a)	5010 (13)	5402 (12)	2434 (27)	900 (205)
	Se(4)	4(a)	2816 (14)	8092 (14)	2600 (40)	1010 (199)
	Se(5)	4(<i>a</i>)	4138 (30)	1718 (34)	4658 (33)	1959 (484)
and c	axes interchan	(ged)				
	U(1)	8(d)	1777(3)	-1(5)	283 (3)	879 (37)
	U(2)	4(c)	101 (5)	2500 (0)	5756 (5)	643 (54)
	Se(1)	$\hat{8}(d)$	4075 (9)	440 (9)	1694 (9)	931 (107)
	Se(2)	4(c)	1874 (15)	2500 (0)	3327 (16)	1391 (183)
	Se(3)	4(c)	5014 (13)	2500 (0)	5407 (12)	937 (157)
	Se(4)	4(c)	2823 (13)	2500 (0)	8082 (14)	919 (162)

Pnma (b

^{*} The authors are indebted to Mr K. L. Wilkinson of Applied Chemistry Division A.E.R.E., Harwell for the preparation of the crystals.

culated to make $|kF_o| = |F_c|$ for each layer. Values for k ranged from 0.38 to 0.50.

The refinements converged with R at 0.113 for $Pna2_1$ and at 0.122 for Pnma (fewer atomic parameters to refine). The positional parameters, given in Table 1, were similar in the two cases, but the isotropic thermal parameters, also given in Table 1, showed consider-

Table 2. Atomic parameters for U₃Se₅ (Pnma) with standard deviations in parentheses

(a) Positiona) Positional parameters (×104)										
	x/a	у/Ь	z/c								
U(1)	1775 (2)	-1(3)	285 (3)								
U(2)	97 (3)	2500 (0)	5755 (3)								
Se(1)	4064 (6)	444 (6)	1691 (6)								
Se(2)	1874 (10)	2500 (0)	3328 (12)								
Se(3)	5003 (10)	2500 (0)	5387 (9)								
Se(4)	2842 (9)	2500 (0)	8074 (10)								

(b) Vibrational parameters (\times 104)

$B_{ij} = 2\pi^2 (a^*)^2 U_{11} etc.$										
	B_{11}	B ₂₂	B ₃₃	B ₁₂	B_{13}	B_{23}				
U(1)	13 (3)	35 (2)	31 (2)	2 (3)	8 (3)	0 (5)				
U(2)	16 (4)	30 (2)	14 (2)	0 (0)	0 (4)	0 (0)				
Se(1)	-2(7)	35 (5)	36 (6)	-16(7)	9 (7)	-8(8)				
Se(2)	28 (12)	42 (10)	53 (11)	0 (0)	-2(14)	0 (0)				
Se(3)	37 (13)	29 (8)	32 (8)	0 (0)	9 (13)	0 (0)				
Se(4)	15 (11)	34 (9)	32 (8)	0 (0)	13 (11)	0 (0)				

able differences, with the values from the *Pnma* refinement falling more clearly into two sets according to atom type. After consideration of all the preceding factors the space group *Pnma* was adopted for further refinement of the structure.

Substitution of the U^{4+} and Se^{2-} ionic scattering curves for the neutral atom curves scarcely influenced the atomic parameters. The ionic scattering curves were retained however, since they appeared to be more appropriate to the emerging structure.

The imaginary component of the anomalous-dispersion correction (Cromer, 1964) was included in the further refinement by means of a program using the block-diagonal approximation (Ahmed, Hall, Pippy & Saunderson, 1968). An analysis of the discrepancy between $|F_o|$ and $|F_c|$ indicated that the differences were not concentrated in any particular region of $\sin \theta/\lambda$ and a straightforward weighting scheme was adopted: $\sqrt{w}=1$ if $|F_o| \le 60$, $\sqrt{w}=60/|F_o|$ if $|F_o| > 60$.

Finally, the process of readjusting the layer scales between cycles was discontinued and all atoms were refined with anisotropic temperature factors. After 3 cycles, all the parameter shifts were less than $\frac{1}{3}$ of their corresponding standard deviations. The final value of R was 0.114. The atomic parameters, together with their standard deviations, are given in Table 2. The

Table 3. Observed and calculated structure amplitudes

The asterisk indicates unobserved reflexions for which $I_0 = \frac{1}{2} I_{\min}$.

6666667888788789111111112222222223333331111112222222222	り 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	L G C F A A U A T T T T T T T T T T T T T T T T
100055564455777577577587758775877587721778572049795881444975777777777777777777777777777777777	11177244401774444111444744441144744445114147147444444147718444414771844444414144
ビディベット じじのじじ ししししし シフリン スマスマスマスマスマスマスマスマスマスマスマスマスマスマス しょうしん ウォル しじしょう ちゅうりゅう ビンド・マイン ちゅう ちゅうけいけいしん しょう ちゅう スマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマ	
1971 1174 1414 1415 1157 844 14 174 141 174 141 141 147 148 144 144 14	· · · · · · · · · · · · · · · · · · ·
7 7 7 8 4 8 4 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4/10/1 (1)//	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Image: Control of the state
••••••••••••••••••••••••••••••••••••	$\begin{array}{c} \mathbf{c} & (-) \\ \mathbf{c} \\ c$
1 1	1 1
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	и к к к в к к к к к к к к и и и и и и и
$ \begin{array}{c} \mathbf{x} & \mathbf{y} = \mathbf{y} = \mathbf{y} = \mathbf{y} = \mathbf{y} + \mathbf$	 м ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч
$ \begin{array}{c} \textbf{g} & \textbf{g} \\ \textbf$	$ \begin{array}{c} t & t \\ 0 & t $
$ \begin{array}{c} 8 & 4.4 \\ -4.7 $	$\begin{array}{c} 1 \\ 4 \\ + \\ 5 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$

1818

Table 3 (cont.)

H K	۱ ۹	10 FD	1040	4	K 1	1050	10 FC	4	K L	1050	1650	H	K L	10F0	10FC	H S	χι 6 13	1050	10°C
63	ġ.	14	20.	5	7 12	54	43	ž	6 11	- 43	38	5	č 12	32	39	ś	3 13	10	12*
65	٩	14	24*	3	8 12	18	12+	٠	¢ 11	29	38	5	3 1 2	17	15*	5	4 13	53	54
	2		24		213	**	39	÷.	1 !!		28	2	: !?	46	36	- 2	213	12	11.
				- 2	2.12			- 2	1 11	14		2	2.15	10	1 74	2	212	16	100
;;	é	13	23.		111		54		4 ii	62	41		7 12	16	13.	ś	8 13	53	47
73	٩	13	2+		2 17	36	38		5 11	42	ذو	5	8 12	34	29	7	0 13	50	45
7.4	•	12		:	3.15	34	78		6 11	75	61	6	2 1 2	67	70	2	2 13	39	60
4.2				- 2	1 1				2 11		41	•	3 12		12		3 13	13	10.
8 2	2	14	°		2.15	- 35		- 2	, , ii	13	21*	2	A 12			÷	2.13	- 11	
8 1	ė	14	zi-	ś	7 12	17	20.0		ii ii	13	1.3*	ž	č 12	34	37	ż	6 13	46	32
84	9	61	61	5	4.12	43	42	4	12 i 1	24	25	7	1 12	29	27	7	7 13	12	8*
8 5	9	16	27+	5	9 11	33	41	5	0 11	53	45	1	2 12	66	51	1	9 1 3	30	36
1 1	2	12			2 12		26	- 2	2 11		30		4 13	38	35			12	11*
	á	54	44	÷	1 15		47	ś	4 ii	58	60	ż	6 12	44		á	111	16	11.
8 9	9	16	16*	7	2 17	91	95	•	5 11	17	2.	i	7 12	13	240	à	2 13	47	46
9 0	٩	29	27	7	3 12	34	31	5	6 11	27	28	7	8 12	31	28	9	3 13	16	7.
2 1	2	16	. 7*		112		65		1 11	17	3.		.9 12	12	17.	2	4 13	16	. 2*
à í	-	16	1.44	÷	A 13	67	21	- 2	0 11	14	- 1í.		· · · · ·				212	13	41
÷ .	9	16	15.	7	7 12	25	22	ś	10 11	16		ģ	1 12	16	94	ģ	7 13	15	6.
95	9	15	27.	7	8 î ?	34	33	5	11 11	15	. i+	9	3 12	16	90	1	0 14	45	35
e c	10	14	31.*	2	.2 12	32	25	5	12 11		34	9	4 12	33	31	6	2 14	13	41*
1 9	10		16		12 12			2	2.11	12	12.		2.12	10			112		12
iż	10	49	4.5	ģ	1 12	46	43	ň	5 11	40	36	- i	1 11	18	1.	ň	A 14	12	474
13	10	65	44	9	2 12	16	90	6	6 11	14	90	i	2 13	98	82		7 14	12	10+
1.4	10	76	72	•	3.12	67	54	6	7 11	13	9.	3	3 13	18	2•		8 14	15	13*'
1 2	10	14	300		111		53	•			32	;	4 13	17		1	\$ 15	12	31.
17	ič	47	58		6 15	16	· ;•	á	0 11	16	13.		6 11		68	- 2	1 15		150
1 9	10	84	64	٩	7 12	44	44	9	1 11	14	14.	5	7 13	17	2.		6 15	12	13.
1 9	10	13	2.7*	•	5 12	64	55	•	2 11	51	42	3	8 13	17	90	4	7 15	11	130
1 12	10		<u>.</u>	2	9 12	28	74		3 11	16		3	10 13	49	48		8 15	11	130
1 13	10	12	4.7.		11 15	15	24.	ě	1 11	16	1.6.		3 13	53	23		10 12	10	10
3 0	ić.	-	61		12 17	19	40	á	6 11	40	41		3 13	14	12*	ś	5 15	14	
3.1	t n	65	69	1	C 11	52	63	9	7 11	16	2.	- 4	4 13	63	43	Ś	6 15	14	Ó+
3.5	10	14		2	1 11	- 23	**	2	<u>* 11</u>	16		•	6 13	13	270	2	7 15	14	1.
, ,	10		-1		4 H	0.	۰.		• 11	15	11.	•	/ 13	13	110	0	0 7	14	0.
3.4	10	54	41	2	3 11	43	49	9	0 11	32	32	•	8 13	13	244	0	17	14	1.
3.2	10	57	.,	2	• 11	- 55	56	1	0 15	32	34	•	10 13	12	1 3.	c	27	14	0.

single anomalously low temperature parameter $[B_{11}$ for Se(1)] may be due to residual anisotropic absorption effects. The final values of the observed and calculated structure amplitudes are given in Table 3.

A difference synthesis computed towards the end of the refinement showed no peaks greater than two electrons.

Discussion

The final values of the short interatomic distances are given in Table 4 together with their estimated standard deviations. Angles at the selenium atoms are given in Table 5.

The essential features of the structure are shown in Fig. 1 which is a view down the [001] direction. U(1) is surrounded by eight near-neighbour selenium atoms at a mean distance of 3.08 ± 0.02 Å while U(2) has seven near neighbours at a mean distance of 2.89 ± 0.03 Å. There are no other U–Se distances shorter than 3.86 Å. Se(1) has four near-neighbour uranium atoms at a mean distance of 2.94 Å and Se(2), Se(3) and Se(4) each have five near-neighbour uranium atoms at a mean distance of 3.06 Å.

The shortest Se-Se distances $(3\cdot40-3\cdot64 \text{ Å})$ are all comparable with the shortest non-bonding contacts $(3\cdot46 \text{ Å})$ in elemental selenium and much greater than the Se-Se bond length $(2\cdot32 \text{ Å})$ (Wyckoff, 1965). The shortest U-U contacts $(4\cdot24 \text{ Å})$ are much longer than the bonding distances $(2\cdot76 \text{ Å})$ in α -uranium (Sturcken & Post, 1960).

In a structure lacking major three-dimensional discontinuity it is far less likely that the arrangement of seven or eight near neighbours around a metal atom

Table 4. Interatomic distances (Å) with standard deviations in parentheses

Due to the large number of equivalent positions involved, the fractional coordinates of each atom are given and a system of primes is avoided for both this table and Fig. 1.

(a) U-Se distances

Atom 1	x/a	y/b	z/c	Atom 2	<i>x</i> / <i>a</i>	y/b	z/c	Distance
U(1)	0.1775	-0.0001	0.0285	Se(1)	0.4064	0.0444	0.1691	3.07 (0.01)
Ūà	0.1775	-0.0001	0.0285	Se(2)	0.1874	0.2500	0.3328	3.18 (0.01)
Ū	0.1775	-0.0001	0.0285	Se(4)	0.2842	0.2500	0.8074	3.04 (0.01)
ŪŪ	0.6775	0.5001	0.4715	Se(3)	0.5003	0.2200	0.5387	3.10 (0.01)
ŪČÍ	0.3226	0.4999	0.5285	Se(2)	0.1874	0.2500	0.3328	3.10 (0.01)
ŪÌÌ	0.3226	0.4999	0.5285	Se(3)	0.5003	0.2200	0.5387	3.06 (0.01)
ŪÌÌ	0.3226	0.4999	0.5285	Se(4)	0.2842	0.2200	0.8074	3.07 (0.01)
UÌÌ	0.3226	0.0001	0.5285	Se(1)	0.4064	0.0444	0.1691	3.00 (0.01)
U(2)	0.0097	0.2500	0.5755	Se(2)	0 ⋅1874	0.2500	0.3328	2.91 (0.01)
Ū(2)	0.5097	0.2500	0.9245	Se(3)	0.5003	0.2500	0.5387	3.00 (0.01)
U(2)	0.5097	0.2500	0.9245	Se(4)	0.2842	0.2200	0.8074	2.95 (0.01)
U(2)	0.5097	0.2500	-0.0755	Se(1)	0.4064	0.0444	0.1691	2.88 (0.01)
U(2)	0.5097	0.2500	-0.0755	Se(1)	0.4064	0.4556	0.1691	2.88 (0.01)
U(2)	0.4904	-0.2500	0.0755	Se(1)	0.4064	0.0444	0.1691	2.80 (0.01)
U(2)	0.4904	-0.500	0.0755	Se(1)	0.4064	0.4556	0.1691	2.80 (0.01)
(b) Se-Se d	listances							
Se(1)	0.4064	0.0444	0.1691	Se(2)	0.1874	0.2500	0.3328	3.47 (0.01)
Se(1)	0.4064	0.0444	0.1691	Se(3)	0.5003	0.2500	0.5387	3.56 (0.01)
Se(3)	0.5003	0.2500	0.5387	Se(4)	0.2842	0.2500	0.8074	3.40 (0.01)
Se(4)	0.2842	0.2500	0.8074	Se(1)	0.4064	0.0444	1.1691	3.64 (0.01)
Se(1)	0.4064	0.0444	0.1691	Se(1)	0.5936	-0.0444	-0.1691	3.59 (0.01)
Se(3)	0.5003	0.2500	0.5387	Se(1)	0.5936	-0.0444	0.8309	3.57 (0.01)
Se(4)	0.2842	0.2200	0.8074	Se(1)	0.0936	0.5444	0.6691	3.61 (0.01)
Se(1)	0.4064	0.0444	0.1691	Se(1)	0.4064	0.4556	0.1691	3.49 (0.01)
(c) U–U di	istances							
U(2)	0.00965	0.25000	0.57548	U(1)	-0.17745	0.00007	0.97154	4.40 (0.0)
U(2)	0.00965	0.25000	0.57548	UÌÌ	-0.17745	0.49993	0.97154	4.40 (0.0)
UÌI	0.17745	0.99993	0.02846	U(1)	0.17745	0.50007	0.02846	4.24 (0.0)
U(1)	0.17745	0.99993	0.02846	U(1)	0.32255	1.00007	-0.47154	4.28 (0.0)

Plane 1:

Table 5. Angles at selenium atoms (°) with standard deviations in parentheses

In Tables 5 and 6, and in Figs. 2 and 3, atoms are marked with superscripts to differentiate between equivalent positions.

89.7 (0.2)

98·2 (0·2) 147·5 (0·2)

105.0(0.2)

101.7 (0.2)

117·0 (0·3) 117·0 (0·3) 95·4 (0·3)

95.4 (0.3)

83·7 (0·2) 86·3 (0·2)

86·0 (0·2) 86·0 (0·2)

93.1 (0.2)

93.1 (0.2)

98.1 (0.2)

98.1 (0.2)

86.3 (0.2)

87.6 (0.2)

92.0 (0.2)

92.0 (0.2)

94.0 (0.2)

94.0 (0.2)

104.0(0.2)

104.0 (0.2)

87·4 (0·2) 88·7 (0·2)

89.1 (0.2)

89.1 (0.2)

104.6 (0.2)

U(1)---Se(1)- $U(1^{i})$

U(1)—Se(1)– $U(2^{i})$

 $\begin{array}{l} U(1) ---Se(1) - U(2^{ii}) \\ U(1^{i}) --Se(1) - U(2^{i}) \end{array}$

 $U(1^{i}) - Se(1) - U(2^{i})$

 $U(2^{ii}) - Se(1) - U(2^{i})$

 $\begin{array}{l} U(1) & - Se(2) - U(2) \\ U(1^{11}) - Se(2) - U(2) \\ U(1^{1}) - Se(2) - U(2) \end{array}$

 $U(1^{iii})-Se(2)-U(2)$

 $\begin{array}{c} U(1) - Se(2) - U(1^{ii}) \\ U(1^{i}) - Se(2) - U(1^{iii}) \end{array}$

 $U(1) - Se(2) - U(1^{i})$ $U(1) - Se(2) - U(1^{i})$ $U(1^{ii}) - Se(2) - U(1^{iii})$

 $U(1^{i})$ -Se(3)-U(2ⁱ)

 $U(1^{iii})-Se(3)-U(2^{i})$

 $U(1^{iv})$ -Se(3)-U(2ⁱ)

 $U(1^{v}) - Se(3) - U(2^{i})$

 $U(1^{i}) - Se(3) - U(1^{iii})$

 $U(1^{iv})-Se(3)-U(1^{v})$

 $U(1^{i}) - Se(3) - U(1^{iv})$

 $U(1^{iii})$ -Se(3)- $U(1^{v})$

U(1)---Se(4)- $U(2^{ii})$

 $U(1^{ii}) - Se(4) - U(2^{ii})$

 $U(1^{i})$ -Se(4)-U(2ⁱⁱ)

 $U(1^{iii})$ -Se(4)-U(2ⁱⁱ)

U(1)—Se(4)– $U(1^{ii})$

 $U(1^{i})$ —Se(4)– $U(1^{iii})$ U(1)—Se(4)– $U(1^{i})$ $U(1^{ii})$ —Se(4)– $U(1^{iii})$

th -	-0.4366x - 0.6443y - 0.6279z + 6.826 = 0								
Atoms in	(Coordinates	(Å)	Distance from					
plane	X	Y	Z	mean plane					
U(1)	4.0093	4.2394	4.1061	-0.2337					
Se(1)	1.1636	4.6167	5.1987	0.0796					
Se(3)	6.2182	2.1200	4.1856	0.1173					
Se(4)	3.5329	2.1200	6.2734	-0.0212					
$Se(4^i)$	2.6821	6.3600	2.3884	0.0280					
Atoms out of plane									
Se(2)	2.3298	2.1200	2.5856	2.8198					
$\tilde{Se}(1^i)$	5.0514	3.8633	1.3138	1.3069					
$Se(2^i)$	3.8852	6.3600	6.4706	-3.0306					
Se(3 ⁱ)	6.2118	6.3600	3.5844	-2.2340					
Plane 2:	0.6153x + 0	·6496 <i>y</i> – 0·4	466z + 1.27	66=0					
Atoms in plane	X	Y	Ζ	Distance from mean plane					
Ū(1)	4.0093	4·2394	4.1061	-0.2701					
Se(2)	2.3298	2.1200	2.5856	0.0655					
$Se(1^i)$	5.0514	3.8633	1.3138	0.0915					
$Se(2^i)$	3-8852	6.3600	6.4706	0.1277					
Se(3 ⁱ)	6.2118	6.3600	3.5844	-0.0147					
Atoms out of plane									
Se(1)	1.1636	4.6167	5.1987	1.2378					
Se(3)	6.2182	2.1200	4.1856	-3.0412					
Se(4)	3.5329	2.1200	6.2734	-2.3217					
$Se(4^i)$	2.6821	6.3600	2 ·3884	2.6911					

56(4) 20021 05000 20001

Dihedral angle between plane 1 and plane $2 = 82.5^{\circ}$.

Fig. 1. View of the unit cell of U_3Se_5 down the [001] direction. Individual atoms may be identified by their fractional coordinates after reference to Table 4. Large circles correspond to atoms with z/c parameters approaching unity and small circles represent atoms with z/c near to zero.

will approach the ideal configurations which have been proposed for isolated polyhedra (King, 1970) and indeed the environments of the uranium atoms are far from regular. Fig. 2 shows the two sets of four atoms comprising the most obvious pair of intersecting trapezoids around U(1). The dihedral angle between the best planes through the trapezoids (82.5°) is intermediate between the values expected (Lippard & Russ, 1968) for a dodecahedral (90°) and an antiprismatic (77.4°) arrangement. The environment around U(2), which is shown in Fig. 3, is also irregular.

Details of the least-squares planes calculated to elucidate the stereochemistry around U(1) are given in Table 6.

The arrangements of near-neighbour uranium atoms around Se(2), Se(3) and Se(4) are roughly square pyramidal although the deviations of some of the angles at Se(2) from the optimum are considerable. Table 5 also shows that the arrangement around Se(1) is somewhat removed from tetrahedral.

Fig. 2 The environment of U(1).

Fig. 3. The environment of U(2). Selenium atoms with identical superscripts are related by the mirror plane at z=0.25.

Since the length of any individual U-Se distance is clearly influenced by factors such as the coordination numbers of both atoms involved, a comparison of the mean separation at each of the uranium atoms with the sum of the octahedral ionic radii for U^{3+} (Peterson & Cunningham, 1968) and Se²⁻ (Pauling, 1960), and for U^{4+} (Peterson & Cunningham, 1967) and Se²⁻ (2.985) and 2.909 Å respectively) does not afford a simple criterion for establishing the charged species present in the crystal of U_3Se_5 . Nevertheless it will be noted that the approximate match between these values and the mean values for U(1) and U(2) quoted above, together with the 2:1 numerical ratio of the metal atom types, is consistent with the ionic composition $M^{4+}M^{3+}_{2}\text{Se}_{5}^{2-}$ which has been anticipated both for this crystal type (Marcon, 1967) and for the related materials $M_1(M_2)_2$ Se₅ where M_1 and M_2 are different metals (Marcon & Pascard, 1968).

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & SAUNDERSON, C. P. (1968). N.R.C. Crystallographic Programs. National Research Council, Ottawa, Canada.
- BOND, W. L. (1959). International Tables for X-ray Crystallography. Vol. II, § 5. Birmingham: Kynoch Press.
- BRACHER, B. H. & TAYLOR, R. I. (1967). Brit. Rep. A.E.R.E. R.5478.
- CROMER, D. T. (1964). Acta Cryst. 18, 17.
- DELL, R. M. & BRIDGER, N. J. (1971). Intern. Rev. Sci. In the press.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- KHODADAD, P. (1961). Bull. Soc. Chim. Fr. p. 133.
- KING, R. B. (1970). J. Amer. Chem. Soc. 92, (22), 6455.
- LIPPARD, S. J. & RUSS, B. J. (1968). Inorg. Chem. 7, (8), 1686.
- MARCON, J.-P. (1967). C. R. Acad. Sci. Paris, 265, 235.
- MARCON, J.-P. & PASCARD, R. (1968). Rev. Intern. Hautes Temp. Réfract. 5, (1), 51.
- MAZURIER, A. & KHODADAD, P. (1968). Bull. Soc. Chim. Fr. (10), p. 4058.
- PAULING, L. (1960). The Nature of the Chemical Bond, p. 514. Ithaca: Cornell Univ. Press.
- PETERSON, J. R. & CUNNINGHAM, B. B. (1968). J. Inorg. Nucl. Chem. 30, 1775.
- PETERSON, J. R. & CUNNINGHAM, B. B. (1967). Inorg. Nucl. Chem. Letters, 3, 327.
- ROOF, R. B. (1959). Phys. Rev. 113, 820.
- STURCKEN, E. F. & POST, B. (1960). Acta Cryst. 13, 852.
- WYCKOFF, R. W. G. (1965). Crystal Structures. Vol. 1, p. 36 ff. New York: Interscience.